

Abstract #4527

MARSO TNG348 is synergistic with PARP inhibitors in tumor models with elevated replication stress Antoine Simoneau, Hsin-Jung Wu, Charlotte Pratt, Grace Comer, Shangtao Liu, Samuel Meier, Tenzing Khendu, Ashley Choi, Hongxiang Zhang, Binzhang Shen

Introduction

Defective maintenance of genomic integrity is a hallmark of cancer cells that can result from oncogene-induced replication stress and by loss of DNA repair mechanisms. DNA repair deficiencies and elevated replication stress present targetable vulnerabilities for cancer treatment. Notably, BRCA1/2 mutant and homologous recombination deficient (HRD) tumors cannot repair double-strand breaks by homologous recombination and rely on alternative pathways of DNA repair. PARP inhibitors (PARPi), which are a standard of care in many BRCA1/2 mutant tumors, cause synthetic lethality with BRCA1/2 mutation by inhibiting the DNA base excision repair pathway. Despite the clinical benefit of PARPi, they are not effective in every HRD tumor and the acquisition of PARPi resistance limits long-term response. TNG348, a selective allosteric inhibitor of the deubiquitinating enzyme USP1, was specifically designed to target HRD vulnerabilities through an alternative mechanism. We previously showed that the anti-tumor activity of USP1 inhibition results from disruption of the translesion synthesis DNA damage tolerance pathway, a mechanism of action that is functionally distinct from base excision repair targeted by PARPi. Our preclinical studies show that TNG348 is active in HRD models and strongly synergizes with PARP inhibitors to drive strong anti-tumor responses. We have identified replication stress as a predictive biomarker of TNG348 response using cell line profiling and genome-wide CRISPR screens. For example, overexpression of oncogenes known to induce replication stress sensitized to the TNG348 and PARPi combination both in vitro and in vivo. These data indicate that cancer-specific elevated DNA replication stress could contribute to tumor sensitivity to TNG348 and provide additional patient stratification strategies and opportunities for indication expansion.

USP1 was identified as a synthetic lethal target in BRCA1/2 mutant cell lines

Douglas Whittington, Sirimas Sudsakorn, Wenhai Zhang, Yi Yu, Yingnan Chen, Brian Haines, Adam Crystal, Jannik N. Andersen, John Maxwell, Scott Throner

Champions Oncology, Crown Bioscience, Enamine