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ABSTRACT

TNG908 pharmacodynamic effects are histology agnostic

PRMTS is a type Il arginine methyltransferase that forms an active complex with methylosome protein
50 (MEP50) to catalyze the symmetric dimethylation (SDMA) of arginine residues in proteins that
regulate biological roles including apoptosis, DNA damage response and RNA processing. Some of the
best characterized PRMT5 substrates are SNRPB, SNRPD1 and SNRPD3, which are necessary for the
formation of the spliceosome and therefore RNA splicing fidelity. MTA-cooperative PRMTS5 inhibitors,
iIncluding the clinical stage inhibitors TNG908 and TNG462, have been shown in preclinical studies to
selectively inhibit PRMT5 in MTAP-deleted cancer cells while sparing normal, MTAP-intact cells.
Consistent with this selective, on-target mechanism, treatment with TNG908 in preclinical studies results
In increased aberrant RNA splicing in MTAP-deleted cells relative to MTAP-intact cells. As MTAP loss
occurs in 10-15% of all human cancer the identification of a signature of alternative splicing events may
report pharmacodynamic activity of PRMT5 inhibitors and potentially predict patient response. Similar
splicing alterations caused by PRMTS5 inhibition were identified in preclinical MTAP-deleted cancer
models representing glioblastoma, non-small cell lung cancer, and others, suggesting the events are
histology-agnostic. Additionally, titration of exogenous MTA, an endogenous inhibitor of PRMTS5,
recapitulated the observed splicing events in preclinical MTAP-proficient cells. Similar findings were
observed utilizing a pharmacological inhibitor of MTAP suggesting that the identified alternative splicing
events are dependent on accumulation of MTA. Collectively, these data suggest that a PRMT5-
dependent RNA splicing signature can monitor the pharmacodynamic activity of MTA-cooperative
PRMTS5 inhibitors in MTAP-deleted cells.

MTAP-deletion and PRMT5 are a synthetic lethal pair
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Figure 1. MTAP deletion and PRMT5 are a synthetic lethal pair. (A) Loss of MTAP, a key enzyme in the methionine salvage
cycle pathway, drives the accumulation of MTA which partially inhibits the symmetric dimethylation of arginine (SDMA) residues on
downstream targets. TNG908 and TNG462 are MTA-cooperative PRMT?5 inhibitors that selectively inhibit PRMTS5 in the presence
of MTA leading to loss of cellular viability. Additionally, decreased SDMA modification of spliceosome components leads to an
increase in alternative splicing of pre-mRNA transcripts (B) Chemical structures of the MTA-cooperative PRMTS5 inhibitors
TNG908 and TNG462.

TNG908 is selective for MTAP-deleted cancer cells
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Figure 2: MTA-cooperative PRMT5S inhibitors are selective for MTAP-deleted cancer cells. (A) TNG908 pharmacodynamic
activity to inhibit PRMTS5 in the HAP1 MTAP-isogenic cell line pair. The data are normalized to a DMSO control for each cell line
and presented as mean = SD. (B) Antiproliferative activity of TNG908 in 7-day in vitro assays using the MTAP-isogenic cell lines
HAP1 (chronic myelogenous leukemia) and HCT116 (colorectal cancer). Data are presented as mean * SD.
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Figure 3: TNG908 pharmacodynamic effects are histology agnostic. (A) Determination of maximum effect (A,,) in 34 cancer
cell lines representing multiple cancer lineages including melanoma, pancreatic adenocarcinoma, mesothelioma, NSCLC,
cholangiocarcinoma, and glioblastoma following 7-days TNG908 treatment. Cell lines are colored by MTAP status. (B) PRMT5
and MTAP levels of cell lines from (A) (top), and exemplar SDMA immunoblot following a 3-day treatment with TNG908 at cell line-
specific EC,, and EC;, concentrations. (C) PRMT5 and SDMA immunoblots following treatment a 3-day treatment of TNG908 at
0.02, 0.08, 0.31, 1.25, 5uM in MTAP-null LN18 cells. (D) Correlation of normalized PRMT5 (left) or a single SDMA-modified
substrate (right) immunoblot levels at the cell line-specific EC50.

PRMTS5 inhibition induces alterations in alternative splicing
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Figure 4: PRMTS inhibition induces alterations in alternative splicing. (A) Differential gene expression from the MTAP-null
GBM LN18 cell line treated for 3 days with 1uM TNG908 compared to DMSO. (B) Gene ontology analysis of significantly regulated
genes from (A). (C) rMATS (replicate Multivariate Analysis of Transcript Splicing) analysis was performed on the RNAseq data
from 3-day TNG908 treatment of LN18 cells to detect differential alternative RNA splicing. (D) Gene ontology analysis of skipped
exons (SE) from (C). (E) Representative validation of the IFI44 SE event in LN18 cells. RT-PCR analysis to specifically detect the
IF144 exon Y skipped exon (SE) (top), and sashimi plot demonstrating ASE (below). Actual exons not labeled. TNG908 dosed at
0.001, 0.01, 0.1, 1, and 10uM. (F) Diagram demonstrating function of a subset of genes with validated alternative events.
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Figure 5: Validated splicing alterations are dose responsive and histology agnostic. (A) Heatmap of 22 distinct alternative 8 T-%cfggg e | ':.%é*fgﬁﬁ I =
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Figure 6: Subset of validated events are specific for PRMT5 inhibition. (A) DALRD3 ASE raw data (left) or PSI (right) splicing events
following a 3-day treatment of indicated compounds dosed at their IC50 concentrations in MTAP-null cell lines representing the
indicated histologies (LN18, GBM; HCT116, CRC; A549, NSCLC; Miapaca2, PDAC). MAT2Ai is AG-270. (B) PSI of DALRD3 and

- ldentified alternative splicing events are PRMT5-dependent, lineage-agnostic and

PNKP ASEs following TNG908 treatment for indicated days in LN18. Data are presented as mean * SD. (C) LC-MS/MS analysis occur both in vitro and in vivo, but are not predictive of sensitivity to TNG908
of MTA and SAM metabolite levels following MTAP inhibitor (MTDIA) treatment for 3 days. (D and E) APSI of DALRD3 SE (APSI =
PSlyapi - PSlytap wtomso) following MTAPI treatment at indicated doses and times in the HAP1 MTAP-isogenic cell line pair. Data ACKNOWLEDGEMENTS
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