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ABSTRACT

CRISPR-StAR ENABLES LARGE SCALE IN VIVO SCREENS

REPRODUCIBLE PHENOTYPES IN A549
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D) Overlap of screening hits across cell lines. INVESTIGATION OF THE DIFFERENTIAL KMT2C AND KMT2D KO PHENOTYPES

CRISPR-StAR SCREENING PLATFORM PROVIDES A SOLUTION
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E) Differential genes that defines Cluster7, which is greatly under-represented in KMT2C KO and is consistent with the GSEA
B) Experimental validation with true biological replicate confirms downsampling analysis. Doench data which reflected the down regulation of coagulation pathway in B).
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